Arquivo da categoria: Matemática

Atividades de Matemática para 2º ano

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anúncios

Exercícios de Matemática com Conjuntos – União – Interseção – Complementos – Diferenças (Ensino médio)

Conjunto é uma coleção de objetos

Nos Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição.

Alguns conceitos primitivos
Conjunto: representa uma coleção de objetos.

  1. O conjunto de todos os brasileiros.
  2. O conjunto de todos os números naturais.
  3. O conjunto de todos os números reais tal que x²-4=0.

Em geral, um conjunto é denotado por uma letra maiúscula do alfabeto: A, B, C, …, Z.

Elemento: é um dos componentes de um conjunto.

  1. José da Silva é um elemento do conjunto dos brasileiros.
  2. 1 é um elemento do conjunto dos números naturais.
  3. -2 é um elemento do conjunto dos números reais que satisfaz à equação x²-4=0.

Em geral, um elemento de um conjunto, é denotado por uma letra minúscula do alfabeto: a, b, c, …, z.
Pertinência: é a característica associada a um elemento que faz parte de um conjunto.

  1. José da Silva pertence ao conjunto dos brasileiros.
  2. 1 pertence ao conjunto dos números naturais.
  3. -2 pertence ao conjunto de números reais que satisfaz à equação x²-4=0.

Símbolo de pertinência: Se um elemento pertence a um conjunto utilizamos o símbolo in que se lê: “pertence”.
Para afirmar que 1 é um número natural ou que 1 pertence ao conjunto dos números naturais, escrevemos:

in N

Para afirmar que 0 não é um número natural ou que 0 não pertence ao conjunto dos números naturais, escrevemos:

notin N

Um símbolo matemático muito usado para a negação é a barra / traçada sobre o símbolo normal.

Algumas notações para conjuntos

Muitas vezes, um conjunto é representado com os seus elementos dentro de duas chaves { e } através de duas formas básicas e de uma terceira forma geométrica:
Apresentação: Os elementos do conjunto estão dentro de duas chaves { e}.

  1. A={a,e,i,o,u}
  2. N={1,2,3,4,…}
  3. M={João,Maria,José}

Descrição: O conjunto é descrito por uma ou mais propriedades.

  1. A={x: x é uma vogal}
  2. N={x: x é um número natural}
  3. M={x: x é uma pessoa da família de Maria}

Diagrama de Venn-Euler: (lê-se: “Ven-óiler”) Os conjuntos são mostrados graficamente.

Subconjuntos

Dados os conjuntos A e B, diz-se que A está contido em B, denotado por AsubsetB, se todos os elementos de A também estão em B. Algumas vezes diremos que um conjunto A está propriamente contido em B, quando o conjunto B, além de conter os elementos de A, contém também outros elementos. O conjunto A é denominado subconjunto de B e o conjunto B é o superconjunto que contém A.

Alguns conjuntos especiais

Conjunto vazio: É um conjunto que não possui elementos. É representado por { } ou por Ø. O conjunto vazio está contido em todos os conjuntos.
Conjunto universo: É um conjunto que contém todos os elementos do contexto no qual estamos trabalhando e também contém todos os conjuntos desse contexto. O conjunto universo é representado por uma letra U. Na sequência não mais usaremos o conjunto universo.

Reunião de conjuntos

A reunião dos conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A ou ao conjunto B.

 B = { x: x  A ou x  B }

Exemplo: Se A={a,e,i,o} e B={3,4} então AB={a,e,i,o,3,4}.

Interseção de conjuntos

A interseção dos conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e ao conjunto B.

 B = { x: x  A e x  B }

Exemplo: Se A={a,e,i,o,u} e B={1,2,3,4} então AB=Ø.

Quando a interseção de dois conjuntos A e B é o conjunto vazio, dizemos que estes conjuntos são disjuntos.

Propriedades dos conjuntos
  1. Fechamento: Quaisquer que sejam os conjuntos A e B, a reunião de A e B, denotada por AB e a interseção de A e B, denotada por AB, ainda são conjuntos no universo.
  2. Reflexiva: Qualquer que seja o conjunto A, tem-se que:
     A = A   e   A  A = A
  3. Inclusão: Quaisquer que sejam os conjuntos A e B, tem-se que:
    subset A  B,  B subset A  B,  A  B subset A,  A  B subset B
  4. Inclusão relacionada: Quaisquer que sejam os conjuntos A e B, tem-se que:
    subset B equivale a A  B = B
    subset B equivale a A  B = A
  5. Associativa: Quaisquer que sejam os conjuntos A, B e C, tem-se que:
     (B  C) = (A  B)  C
     (B  C) = (A  B)  C
  6. Comutativa: Quaisquer que sejam os conjuntos A e B, tem-se que:
     B = B  A
     B = B  A
  7. Elemento neutro para a reunião: O conjunto vazio Ø é o elemento neutro para a reunião de conjuntos, tal que para todo conjunto A, se tem:
     Ø = A
  8. Elemento “nulo” para a interseção: A interseção do conjunto vazio Ø com qualquer outro conjunto A, fornece o próprio conjunto vazio.
     Ø = Ø
  9. Elemento neutro para a interseção: O conjunto universo U é o elemento neutro para a interseção de conjuntos, tal que para todo conjunto A, se tem:
     U = A
  10. Distributiva: Quaisquer que sejam os conjuntos A, B e C, tem-se que:
     (B  C ) = (A  B)  (A  C)
     (B  C) = (A  B)  (A  C)

    Os gráficos abaixo mostram a distributividade.

Diferença de conjuntos

A diferença entre os conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e não pertencem ao conjunto B.

A-B = {x: x  A e x  B}

Do ponto de vista gráfico, a diferença pode ser vista como:

Complemento de um conjunto

O complemento do conjunto B contido no conjunto A, denotado por CAB, é a diferença entre os conjuntos A e B, ou seja, é o conjunto de todos os elementos que pertencem ao conjunto A e não pertencem ao conjunto B.

CAB = A-B = {x: x  A e x  B}

Graficamente, o complemento do conjunto B no conjunto A, é dado por:

Quando não há dúvida sobre o universo U em que estamos trabalhando, simplesmente utilizamos a letra c posta como expoente no conjunto, para indicar o complemento deste conjunto. Muitas vezes usamos a palavracomplementar no lugar de complemento.
Exemplos: Øc=U e Uc=Ø.

Leis de Augustus De Morgan
  1. O complementar da reunião de dois conjuntos A e B é a interseção dos complementares desses conjuntos.
    (A  B)c = Ac  Bc
  2. O complementar da reunião de uma coleção finita de conjuntos é a interseção dos complementares desses conjuntos.
    (A1  A2  An)c = A1c  A2c  Anc
  3. O complementar da interseção de dois conjuntos A e B é a reunião dos complementares desses conjuntos.
    (A  B)c = Ac  Bc
  4. O complementar da interseção de uma coleção finita de conjuntos é a reunião dos complementares desses conjuntos.
    (A1  A2  An)c = A1c  A2c  Anc

Diferença simétrica

A diferença simétrica entre os conjuntos A e B é o conjunto de todos os elementos que pertencem à reunião dos conjuntos A e B e não pertencem à interseção dos conjuntos A e B.

AB = { x: xAB e xAB }

O diagrama de Venn-Euler para a diferença simétrica é:

Exercício: Dados os conjuntos A, B e C, pode-se mostrar que:

  1. A=Ø se, e somente se, B=AB.
  2. O conjunto vazio é o elemento neutro para a operação de diferença simétrica. Usar o ítem anterior.
  3. A diferença simétrica é comutativa.
  4. A diferença simétrica é associativa.
  5. AA=Ø (conjunto vazio).
  6. A interseção entre A e BC é distributiva, isto é:
     (B  C) = (A  B)  (A  C)
  7.  B está contida na reunião de AC e de BC, mas esta inclusão é própria, isto é:
     B subset (A  C)  (B  C)

Exercícios de Matemática – Equação do 2º grau

As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:

2x + 1 = 0, o expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.

2x² + 2x + 6 = 0, temos duas incógnitas x nesta equação, onde uma delas possui o maior expoente, determinado por 2. Essa equação é classificada como do 2º grau.

x³ – x² + 2x – 4 = 0, nesse caso temos três incógnitas x, onde o maior expoente igual a 3 determina que a equação é classificada como do 3º grau.

Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau, utilizando o método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. Por exemplo, as raízes da equação do 2º grau x² – 10x + 24 = 0 são x = 4 ou x = 6, pois:

Substituindo x = 4 na equação, temos:

x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)

Substituindo x = 6 na equação, temos:

x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)

Podemos verificar que os dois valores satisfazem a equação. Mas como determinarmos os valores que tornem a equação uma sentença verdadeira? É sobre essa forma de determinar os valores desconhecidos que abordaremos a seguir.

Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.

Uma equação do 2º grau possui a seguinte lei de formação ax² + bx + c = 0, onde a, b e c são os coeficientes da equação. Portanto, os coeficientes da equação x² – 2x – 3 = 0 sãoa = 1, b = –2 e c = –3.

Na fórmula de Bhaskara utilizaremos somente os coeficientes. Veja:

1º passo: determinar o valor do discriminante ou delta (∆) 
∆ = b² – 4 * a * c
∆ = (–2)² – 4 * 1 * (–3)
∆ = 4 + 12
∆ = 16

2º passo 

Os resultados são x’ = 3 e x” = –1.

 Exemplo 2

Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.

Os coeficientes são:
a = 1
b = 8
c = 16

∆ = b² – 4 * a * c
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0

No exemplo 2 devemos observar que o valor do discriminante é igual a zero. Nesses casos a equação possuirá somente uma solução ou raiz única.

Exemplo 3

Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.

∆ = b² – 4 * a * c
∆ = 6² – 4 * 10 * 10
∆ = 36 – 400
∆ = –364

Nas resoluções em que o valor do discriminante é igual ou menor que zero, isto é, o número seja negativo, a equação não possui raízes reais.